Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The three-isotope system of oxygen (16O, 17O, 18O) is a powerful tool to study environmental oxidation chemistry and cycling of oxygen-bearing species (e.g., sulfates, nitrates, carbonates, etc.). Despite its evident utility, little work has focused onextending the triple oxygen isotope (Δ’17O) tool to oxygen contained in organic matter (OM). This is largely due to methodological challenges with isolating OM-bound oxygen and preparing it for isotopic analysis. Herein, we report on a newly developed method for high-precision Δ’17O measurements of OM (Δ’17O precision of 0.020‰) and apply this technique to investigate partial photochemical oxidation of Suwannee River natural OM in air-equilibrated aquatic samples. Through this, we reveal that the oxygen isotope evolution of the Suwannee OM supports a model whereby OM partial photo-oxidation proceeds via one or more reactive oxygen intermediates. Our measurements further highlight the potential of triple oxygen isotope analyses on OM-bound oxygen to fingerprint OM oxidation pathways, redox chemistry, and source and synthesis reactions.more » « lessFree, publicly-accessible full text available June 24, 2026
-
Leachates of dissolved organic carbon (DOC) from permafrost soils were prepared from soils collected from the North Slope of Alaska in 2018 and 2022. Soil leachates were then either kept in the dark or exposed to light from LEDs at 305 nm (UV) and 405 nm (visible), and then inoculated with native microbial communities and incubated. At the start of the biological incubations, single replicates of the DOC after dark or light treatment and inoculation were assigned accession numbers and analyzed for 14C and 13C at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. At the end of the biological incubations, duplicates of the dissolved inorganic carbon (DIC) in those waters were assigned accession numbers and analyzed for 14C and 13C at the NOSAMS facility.more » « less
-
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic. Daily rates of sunlight absorption by chromophoric dissolved organic matter (CDOM) from the permafrost soil leachates over the water column depth of an arctic headwater stream were quantified.more » « less
-
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic, either kept in the dark or exposed to light treatments, and then incubated with native permafrost microbial communities. The radiocarbon (14C) and stable carbon (13C) isotopic compositions of the initial DOC present in the dark or light-exposed permafrost soil leachates and the carbon dioxide (CO2) produced by microbial respiration of dark or light-exposed permafrost DOC were quantified.more » « less
-
Dissolved organic carbon (DOC) was leached from permafrost soils collected from the frozen permafrost layer at four sites underlying tussock tundra or wet sedge tundra vegetation and from both undisturbed soil and a thermokarst failure on the North Slope of Alaska during the summers of 2018 and 2022.more » « less
-
Abstract The biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles.more » « less
An official website of the United States government

Full Text Available